| 1 | #include <stdlib.h> |
| 2 | #include <errno.h> |
| 3 | #include <string.h> |
| 4 | |
| 5 | #include "store.h" |
| 6 | #include "blocktree.h" |
| 7 | |
| 8 | #define min(a, b) (((b) < (a))?(b):(a)) |
| 9 | #define ISDELOP(op) (((op).buf == NULL) && ((op).fillfn == NULL)) |
| 10 | |
| 11 | ssize_t btget(struct store *st, struct btnode *tree, block_t bl, void *buf, size_t len, size_t blsize) |
| 12 | { |
| 13 | int d; |
| 14 | block_t c, sel; |
| 15 | struct btnode indir[1 << blsize]; |
| 16 | ssize_t sz; |
| 17 | |
| 18 | if(tree->d == 0) { |
| 19 | errno = ERANGE; |
| 20 | return(-1); |
| 21 | } |
| 22 | while(1) { |
| 23 | d = tree->d & 0x7f; |
| 24 | /* This check should really only be necessary on the first |
| 25 | * iteration, but I felt it was easier to put it in the |
| 26 | * loop. */ |
| 27 | if((bl >> (d * blsize)) > 0) { |
| 28 | errno = ERANGE; |
| 29 | return(-1); |
| 30 | } |
| 31 | |
| 32 | if(d == 0) |
| 33 | return(storeget(st, buf, len, &tree->a)); |
| 34 | |
| 35 | /* Luckily, this is tail recursive */ |
| 36 | if((sz = storeget(st, indir, sizeof(indir), &tree->a)) < 0) |
| 37 | return(-1); |
| 38 | c = sz / sizeof(struct btnode); |
| 39 | sel = bl >> ((d - 1) * blsize); |
| 40 | if(sel >= c) { |
| 41 | errno = ERANGE; |
| 42 | return(-1); |
| 43 | } |
| 44 | tree = &indir[sel]; |
| 45 | bl &= (1LL << ((d - 1) * blsize)) - 1; |
| 46 | } |
| 47 | return(0); |
| 48 | } |
| 49 | |
| 50 | static int btputleaf(struct store *st, struct btnode *leaf, struct btop *op, block_t bloff) |
| 51 | { |
| 52 | void *buf; |
| 53 | struct addr na; |
| 54 | int ret; |
| 55 | |
| 56 | if(ISDELOP(*op)) { |
| 57 | leaf->d = 0; |
| 58 | return(0); |
| 59 | } |
| 60 | buf = NULL; |
| 61 | if(op->buf == NULL) { |
| 62 | buf = op->buf = malloc(op->len); |
| 63 | if(op->fillfn(buf, op->len, op->pdata)) |
| 64 | return(-1); |
| 65 | } |
| 66 | ret = storeput(st, op->buf, op->len, &na); |
| 67 | if(buf != NULL) |
| 68 | free(buf); |
| 69 | if(ret) |
| 70 | return(-1); |
| 71 | leaf->d = 0x80; |
| 72 | leaf->a = na; |
| 73 | return(0); |
| 74 | } |
| 75 | |
| 76 | static int countops(struct btop *ops, int numops, block_t bloff, block_t maxbl) |
| 77 | { |
| 78 | int i; |
| 79 | |
| 80 | for(i = 0; i < numops; i++) { |
| 81 | if(ops[i].blk - bloff >= maxbl) |
| 82 | break; |
| 83 | } |
| 84 | return(i); |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * blputmany() in many ways makes the code uglier, but it saves a |
| 89 | * *lot* of space, since it doesn't need to store intermediary blocks. |
| 90 | */ |
| 91 | static int btputmany2(struct store *st, struct btnode *tree, struct btop *ops, int numops, size_t blsize, block_t bloff) |
| 92 | { |
| 93 | int i, subops, d, f, hasid; |
| 94 | block_t c, sel, bl, nextsz; |
| 95 | struct addr na; |
| 96 | struct btnode indir[1 << blsize]; |
| 97 | ssize_t sz; |
| 98 | |
| 99 | d = tree->d & 0x7f; |
| 100 | f = tree->d & 0x80; |
| 101 | |
| 102 | hasid = 0; |
| 103 | |
| 104 | for(i = 0; i < numops; ) { |
| 105 | if(ops[i].blk < bloff) { |
| 106 | errno = ERANGE; |
| 107 | return(-1); |
| 108 | } |
| 109 | bl = ops[i].blk - bloff; |
| 110 | |
| 111 | if((d == 0) && (bl == 0)) { |
| 112 | if(btputleaf(st, tree, ops, bloff)) |
| 113 | return(-1); |
| 114 | i++; |
| 115 | continue; |
| 116 | } |
| 117 | |
| 118 | if(f && (bl == (1LL << (d * blsize)))) { |
| 119 | /* New level of indirection */ |
| 120 | if(hasid) { |
| 121 | if(storeput(st, indir, c * sizeof(struct btnode), &na)) |
| 122 | return(-1); |
| 123 | tree->a = na; |
| 124 | } |
| 125 | indir[0] = *tree; |
| 126 | tree->d = ++d; |
| 127 | f = 0; |
| 128 | c = 1; |
| 129 | hasid = 1; |
| 130 | } else if(d == 0) { |
| 131 | /* New tree */ |
| 132 | if(bl != 0) { |
| 133 | errno = ERANGE; |
| 134 | return(-1); |
| 135 | } |
| 136 | /* Assume that numops == largest block number + 1 -- gaps |
| 137 | * will be detected as errors later */ |
| 138 | for(bl = numops - 1; bl > 0; d++, bl <<= blsize); |
| 139 | tree->d = d; |
| 140 | c = 0; |
| 141 | hasid = 1; |
| 142 | } else { |
| 143 | /* Get indirect block */ |
| 144 | if(!hasid) { |
| 145 | if((sz = storeget(st, indir, sizeof(indir), &tree->a)) < 0) |
| 146 | return(-1); |
| 147 | c = sz / sizeof(struct btnode); |
| 148 | hasid = 1; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | sel = bl >> ((d - 1) * blsize); |
| 153 | if(sel > c) { |
| 154 | errno = ERANGE; |
| 155 | return(-1); |
| 156 | } |
| 157 | |
| 158 | if(sel == c) { |
| 159 | /* Append new */ |
| 160 | if((c > 0) && (!(indir[c - 1].d & 0x80) || ((indir[c - 1].d & 0x7f) < (d - 1)))) { |
| 161 | errno = ERANGE; |
| 162 | return(-1); |
| 163 | } |
| 164 | indir[c].d = 0; |
| 165 | c++; |
| 166 | } |
| 167 | nextsz = 1LL << ((d - 1) * blsize); |
| 168 | subops = countops(ops + i, numops - i, bloff + (sel * nextsz), nextsz); |
| 169 | if(btputmany2(st, &indir[sel], ops + i, subops, blsize, bloff + (sel * nextsz))) |
| 170 | return(-1); |
| 171 | i += subops; |
| 172 | |
| 173 | if((sel == (1 << blsize) - 1) && (indir[sel].d == ((d - 1) | 0x80))) { |
| 174 | /* Filled up */ |
| 175 | tree->d |= 0x80; |
| 176 | f = 1; |
| 177 | } else if(indir[sel].d == 0) { |
| 178 | /* Erased */ |
| 179 | if(--c == 1) { |
| 180 | tree->d = indir[0].d; |
| 181 | tree->a = indir[0].a; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | if(hasid) { |
| 186 | if(storeput(st, indir, c * sizeof(struct btnode), &na)) |
| 187 | return(-1); |
| 188 | tree->a = na; |
| 189 | } |
| 190 | return(0); |
| 191 | } |
| 192 | |
| 193 | int btputmany(struct store *st, struct btnode *tree, struct btop *ops, int numops, size_t blsize) |
| 194 | { |
| 195 | return(btputmany2(st, tree, ops, numops, blsize, 0)); |
| 196 | } |
| 197 | |
| 198 | int btput(struct store *st, struct btnode *tree, block_t bl, void *buf, size_t len, size_t blsize) |
| 199 | { |
| 200 | struct btop ops; |
| 201 | |
| 202 | memset(&ops, 0, sizeof(ops)); |
| 203 | ops.blk = bl; |
| 204 | ops.buf = buf; |
| 205 | ops.len = len; |
| 206 | return(btputmany(st, tree, &ops, 1, blsize)); |
| 207 | } |
| 208 | |
| 209 | void btmkop(struct btop *op, block_t bl, void *buf, size_t len) |
| 210 | { |
| 211 | memset(op, 0, sizeof(*op)); |
| 212 | op->blk = bl; |
| 213 | op->buf = buf; |
| 214 | op->len = len; |
| 215 | } |
| 216 | |
| 217 | static int opcmp(const struct btop **op1, const struct btop **op2) |
| 218 | { |
| 219 | if(ISDELOP(**op1) && ISDELOP(**op2)) |
| 220 | return((*op2)->blk - (*op1)->blk); |
| 221 | else if(!ISDELOP(**op1) && ISDELOP(**op2)) |
| 222 | return(-1); |
| 223 | else if(ISDELOP(**op1) && !ISDELOP(**op2)) |
| 224 | return(1); |
| 225 | else |
| 226 | return((*op1)->blk - (*op2)->blk); |
| 227 | } |
| 228 | |
| 229 | void btsortops(struct btop *ops, int numops) |
| 230 | { |
| 231 | qsort(ops, numops, sizeof(*ops), (int (*)(const void *, const void *))opcmp); |
| 232 | } |
| 233 | |
| 234 | block_t btcount(struct store *st, struct btnode *tree, size_t blsize) |
| 235 | { |
| 236 | int d, f; |
| 237 | struct btnode indir[1 << blsize]; |
| 238 | block_t c, ret; |
| 239 | ssize_t sz; |
| 240 | |
| 241 | d = tree->d & 0x7f; |
| 242 | f = tree->d & 0x80; |
| 243 | |
| 244 | if(f) |
| 245 | return(1LL << (d * blsize)); |
| 246 | |
| 247 | if(d == 0) |
| 248 | return(0); |
| 249 | |
| 250 | ret = 0; |
| 251 | while(1) { |
| 252 | if((sz = storeget(st, indir, sizeof(indir), &tree->a)) < 0) |
| 253 | return(-1); |
| 254 | c = sz / sizeof(struct btnode); |
| 255 | ret += (c - 1) * (1LL << ((d - 1) * blsize)); |
| 256 | d = indir[c - 1].d & 0x7f; |
| 257 | f = indir[c - 1].d & 0x80; |
| 258 | if(f) |
| 259 | return(ret + (1LL << (d * blsize))); |
| 260 | tree = &indir[c - 1]; |
| 261 | } |
| 262 | } |